7 found
Order:
  1.  47
    Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms.John S. Mattick - 2003 - Bioessays 25 (10):930-939.
    The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  2.  68
    The relationship between non‐protein‐coding DNA and eukaryotic complexity.Ryan J. Taft, Michael Pheasant & John S. Mattick - 2007 - Bioessays 29 (3):288-299.
    There are two intriguing paradoxes in molecular biology-the inconsistent relationship between organismal complexity and (1) cellular DNA content and (2) the number of protein-coding genes-referred to as the C-value and G-value paradoxes, respectively. The C-value paradox may be largely explained by varying ploidy. The G-value paradox is more problematic, as the extent of protein coding sequence remains relatively static over a wide range of developmental complexity. We show by analysis of sequenced genomes that the relative amount of non-protein-coding sequence increases (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  3.  5
    A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs.John S. Mattick - 2023 - Bioessays 45 (9):2300080.
    Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of ‘normal science’. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non‐functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of paramutation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  31
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):548-552.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  5.  16
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):642-642.
  6.  64
    RNA regulation of epigenetic processes.John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer & Mark F. Mehler - 2009 - Bioessays 31 (1):51-59.
    There is increasing evidence that dynamic changes to chromatin, chromosomes and nuclear architecture are regulated by RNA signalling. Although the precise molecular mechanisms are not well understood, they appear to involve the differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. A significant fraction of the genome-wide transcription of non-protein coding RNAs may be involved in this process, comprising a previously hidden layer of intermediary genetic information that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  59
    The role of regulatory RNA in cognitive evolution.Guy Barry & John S. Mattick - 2012 - Trends in Cognitive Sciences 16 (10):497-503.
    The evolution of the human brain has resulted in the emergence of higher-order cognitive abilities, such as reasoning, planning and social awareness. Although there has been a concomitant increase in brain size and complexity, and component diversification, we argue that RNA regulation of epigenetic processes, RNA editing, and the controlled mobilization of transposable elements have provided the major substrates for cognitive advance. We also suggest that these expanded capacities and flexibilities have led to the collateral emergence of psychiatric fragilities and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation